1.4 EXERCISES

VOCABULARY: Fill in the blanks.

1. A relation that assigns to each element \(x \) from a set of inputs, or ________, exactly one element \(y \) in a set of outputs, or ________, is called a ________. domain; range; function

2. Functions are commonly represented in four different ways, ________, ________, ________, and ________. See margin.

3. For an equation that represents \(y \) as a function of \(x \), the set of all values taken on by the ________ variable \(x \) is the domain, and the set of all values taken on by the ________ variable \(y \) is the range. independent; dependent

4. The function given by
 \[
 f(x) = \begin{cases}
 2x - 1, & x < 0 \\
 x^2 + 4, & x \geq 0
 \end{cases}
 \]

is an example of a ________ function. piecewise-defined

5. If the domain of the function \(f \) is not given, then the set of values of the independent variable for which the expression is defined is called the ________. implied domain

6. In calculus, one of the basic definitions is that of a ________, given by \(\frac{f(x + h) - f(x)}{h} \), \(h \neq 0 \). difference quotient

SKILLS AND APPLICATIONS

In Exercises 7–10, is the relationship a function?

7. Domain Range
 \[
 \begin{array}{c|c}
 x & y \\
 \hline
 -2 & 5 \quad \text{Yes} \\
 -1 & 6 \\
 0 & 7 \\
 1 & 8 \\

 \end{array}
 \]

8. Domain Range
 \[
 \begin{array}{c|c}
 x & y \\
 \hline
 -2 & 3 \quad \text{No} \\
 -1 & 4 \\
 0 & 5 \\

 \end{array}
 \]

9. Domain Range
 National League
 - Cubs
 - Pirates
 - Dodgers
 American League
 - Orioles
 - Yankees
 - Twins

10. Domain Range
 (Year)
 - 1999: 10
 - 2000: 12
 - 2001: 15
 - 2002: 16
 - 2003: 21
 - 2004: 24
 - 2005: 27
 - 2006: 10
 - 2007: 3
 - 2008: 2

In Exercises 11–14, determine whether the relation represents \(y \) as a function of \(x \).

11. Input, \(x \) | Output, \(y \)
 \[
 \begin{array}{c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 \\
 \hline
 y & -8 & -1 & 0 & 1 & 8 \\
 \end{array}
 \]

 Yes, each input value has exactly one output value.

12–14. See margin.

12. Input, \(x \) | Output, \(y \)
 \[
 \begin{array}{c|c|c|c|c|c}
 x & 0 & 1 & 2 & 1 & 0 \\
 \hline
 y & -4 & -2 & 0 & 2 & 4 \\
 \end{array}
 \]

13. Input, \(x \) | Output, \(y \)
 \[
 \begin{array}{c|c|c|c|c|c}
 x & 10 & 7 & 4 & 7 & 10 \\
 \hline
 y & 3 & 6 & 9 & 12 & 15 \\
 \end{array}
 \]

14. Input, \(x \) | Output, \(y \)
 \[
 \begin{array}{c|c|c|c|c|c}
 x & 0 & 3 & 9 & 12 & 15 \\
 \hline
 y & 3 & 3 & 3 & 3 & 3 \\
 \end{array}
 \]

In Exercises 15 and 16, which sets of ordered pairs represent functions from \(A \) to \(B \)? Explain. 15–16. See margin.

15. \(A = \{0, 1, 2, 3\} \) and \(B = \{-2, -1, 0, 1, 2\} \)
 (a) \{\{0, 1\}, \{1, -2\}, \{2, 0\}, \{3, 2\}\}
 (b) \{\{0, -1\}, \{2, 2\}, \{1, -2\}, \{3, 0\}, \{1, 1\}\}
 (c) \{\{0, 0\}, \{1, 0\}, \{2, 0\}, \{3, 0\}\}
 (d) \{\{0, 2\}, \{3, 0\}, \{1, 1\}\}

16. \(A = \{a, b, c\} \) and \(B = \{0, 1, 2, 3\} \)
 (a) \{\{(a, 1\}, \{(c, 2\}, \{(c, 3\}, \{(b, 3\}\}
 (b) \{\{(a, 1\}, \{(b, 2\}, \{(c, 3\}\}
 (c) \{\{(1, a\}, \{(0, a\}, \{(2, c\}, \{(3, b\}\}
 (d) \{\{(c, 0\}, \{(b, 0\}, \{(a, 3\}\}
 (e) \{\{(a, 0\}, \{(b, 0\}, \{(a, 0\}\}

CIRCULATION OF NEWSPAPERS In Exercises 17 and 18, use the graph, which shows the circulation (in millions) of daily newspapers in the United States. (Source: Editor & Publisher Company)

![Graph showing circulation of newspapers](image)

17. Is the circulation of morning newspapers a function of the year? Is the circulation of evening newspapers a function of the year? Explain. **See margin.**

18. Let \(f(x) \) represent the circulation of evening newspapers in year \(x \). Find \(f(2002) \). **9 million**

In Exercises 19–36, determine whether the equation represents \(y \) as a function of \(x \).

19. \(x^2 + y^2 = 4 \) **Not a function**

20. \(x^2 - y^2 = 16 \) **Not a function**

21. \(x^2 + y = 4 \) **Function**

22. \(y - 4x^2 = 36 \) **Function**

23. \(2x + 3y = 4 \) **Function**

24. \(2x + 5y = 10 \) **Function**

25. \((x + 2)^2 + (y - 1)^2 = 25 \) **Not a function**

26. \((x - 2)^2 + y^2 = 4 \) **Not a function**

27. \(y^2 = x^2 - 1 \) **Not a function**

28. \(x + y^2 = 4 \) **Not a function**

29. \(y = \sqrt{16 - x^2} \) **Function**

30. \(y = \sqrt{x + 5} \) **Function**

31. \(y = |4 - x| \) **Function**

32. \(|y| = 4 - x \) **Not a function**

33. \(x = 14 \) **Not a function**

34. \(y = -75 \) **Function**

35. \(y + 5 = 0 \) **Function**

36. \(x - 1 = 0 \) **Not a function**

In Exercises 37–52, evaluate the function at each specified value of the independent variable and simplify.

37. \(f(x) = 2x - 3 \)
 - (a) \(f(1) = 1 \)
 - (b) \(f(-3) = -9 \)
 - (c) \(f(x - 1) = 2x - 5 \)

38. \(g(y) = 7 - 3y \)
 - (a) \(g(0) = 7 \)
 - (b) \(g(\frac{7}{3}) = 0 \)
 - (c) \(g(s + 2) = 1 - 3s \)

39. \(V(r) = \frac{4}{3}\pi r^3 \)
 - (a) \(V(3) = 36\pi \)
 - (b) \(V(\frac{3}{2}) = \frac{9}{2}\pi \)
 - (c) \(V(2r) = \frac{32}{3}\pi r^3 \)

40. \(S(r) = 4\pi r^2 \)
 - (a) \(S(2) = 16\pi \)
 - (b) \(S(\frac{1}{2}) = \pi \)
 - (c) \(S(3r) = 36\pi r^2 \)

41. \(g(t) = 4t^2 - 3t + 5 \)
 - (a) \(g(2) = 15 \)
 - (b) \(g(t - 2) = 4t^2 - 19t + 27 \)
 - (c) \(g(t) - g(2) = 4t^2 - 3t - 10 \)

42. \(h(t) = t^2 - 2t \)
 - (a) \(h(2) = 0 \)
 - (b) \(h(1.5) = 0.75 \)
 - (c) \(h(x + 2) \)

43. \(f(y) = 3 - \sqrt{y} \)
 - (a) \(f(4) = 1 \)
 - (b) \(f(0.25) = 2.5 \)
 - (c) \(f(4x^3 - 2|x|) \)

44. \(f(x) = \sqrt{x + 8} + 2 \)
 - (a) \(f(-8) = 2 \)
 - (b) \(f(1) = 5 \)
 - (c) \(f(x - 8) = \sqrt{x + 2} \)

45. \(q(x) = \frac{1}{(x^2 - 9)} \) **See margin.**
 - (a) \(q(0) \)
 - (b) \(q(3) \)
 - (c) \(q(y + 3) \)

46. \(q(t) = \frac{(2t^2 + 3)}{t^2} \) **See margin.**
 - (a) \(q(2) \)
 - (b) \(q(0) \)
 - (c) \(q(-x) \)

47. \(f(x) = |x|/x \) **See margin.**
 - (a) \(f(2) \)
 - (b) \(f(-2) \)
 - (c) \(f(x) = x - 1 \)

48. \(f(x) = |x| + 4 \)
 - (a) \(f(2) = 6 \)
 - (b) \(f(-2) = 6 \)
 - (c) \(f(x^2) = x^2 + 4 \)

49. \(f(x) = \begin{cases} 2x + 1, & x < 0 \\ 2x + 2, & x \geq 0 \end{cases} \)
 - (a) \(f(-1) = -1 \)
 - (b) \(f(0) = 2 \)
 - (c) \(f(2) = 6 \)

50. \(f(x) = \begin{cases} x^2 + 2, & x \leq 1 \\ 2x^2 + 2, & x > 1 \end{cases} \)
 - (a) \(f(-2) = 6 \)
 - (b) \(f(1) = 3 \)
 - (c) \(f(2) = 10 \)

51. \(f(x) = \begin{cases} 3x - 1, & x < -1 \\ x^2, & x \geq 1 \end{cases} \)
 - (a) \(f(-2) = 7 \)
 - (b) \(f(-\frac{1}{2}) = 4 \)
 - (c) \(f(3) = 9 \)

52. \(f(x) = \begin{cases} 4 - 5x, & x \leq -2 \\ x^2 + 1, & x \geq 2 \end{cases} \)
 - (a) \(f(-3) = 19 \)
 - (b) \(f(4) = 17 \)
 - (c) \(f(-1) = 0 \)

In Exercises 53–58, complete the table.

53. \(f(x) = x^2 - 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

54. \(g(x) = \sqrt{x - 3} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

55. \(h(t) = \frac{1}{2}|t + 3| \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(-5)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(t))</td>
<td>1</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>1</td>
</tr>
</tbody>
</table>
56. \(f(s) = \frac{|s - 2|}{s - 2} \)

<table>
<thead>
<tr>
<th>(s)</th>
<th>0</th>
<th>1</th>
<th>(\frac{3}{2})</th>
<th>(\frac{5}{2})</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(s))</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

57. \(f(x) = \begin{cases} \frac{3x}{2} + 4, & x \leq 0 \\ (x - 2)^2, & x > 0 \end{cases} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>5</td>
<td>(\frac{9}{2})</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

58. \(f(x) = \begin{cases} 9 - x^2, & x < 3 \\ x - 3, & x \geq 3 \end{cases} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

In Exercises 59–66, find all real values of \(x \) such that \(f(x) = 0 \).

59. \(f(x) = 15 - 3x \)

60. \(f(x) = 5x + 1 \)

61. \(f(x) = \frac{3x - 4}{5} \)

62. \(f(x) = \frac{12 - x^2}{5} \)

63. \(f(x) = x^2 - 9 \)

64. \(f(x) = x^2 - 8x + 15 \)

65. \(f(x) = x^3 - x \)

66. \(f(x) = x^3 - x^2 - 4x + 4 \)

In Exercises 67–70, find the value(s) of \(x \) for which \(f(x) = g(x) \).

67. \(f(x) = x^2, \quad g(x) = x + 2 \)

68. \(f(x) = x^2 + 2x + 1, \quad g(x) = 7x - 5 \)

69. \(f(x) = x^4 - 2x^2, \quad g(x) = 2x^2 \)

70. \(f(x) = \sqrt{x} - 4, \quad g(x) = 2 - x \)

In Exercises 71–82, find the domain of the function.

71. \(f(x) = 5x^2 + 2x - 1 \)

72. \(g(x) = 1 - 2x^2 \)

73. \(h(t) = \frac{4}{t} \)

74. \(s(y) = \frac{3y}{y + 5} \)

75. \(g(y) = \sqrt{y} - 10 \)

76. \(f(t) = \frac{3}{t} + 4 \)

77. \(g(x) = \frac{1}{x - x^2} \)

78. \(h(x) = \frac{10}{x^2 - 2x} \)

79. \(f(s) = \frac{s - 1}{s - 4} \)

80. \(f(x) = \frac{x + 6}{6 + x} \)

81. \(f(x) = \frac{x - 4}{\sqrt{x}} \)

82. \(f(x) = \frac{x + 2}{\sqrt{x} - 10} \)

71–82. See margin.

In Exercises 83–86, assume that the domain of \(f \) is the set \(A = \{-2, -1, 0, 1, 2\} \). Determine the set of ordered pairs that represents the function \(f \). See margin.

83. \(f(x) = x^2 \)

84. \(f(x) = (x - 3)^2 \)

85. \(f(x) = |x| + 2 \)

86. \(f(x) = |x + 1| \)

87. **GEOMETRY** Write the area \(A \) of a square as a function of its perimeter \(P \). See margin.

88. **GEOMETRY** Write the area \(A \) of a circle as a function of its circumference \(C \). See margin.

89. **MAXIMUM VOLUME** An open box of maximum volume is to be made from a square piece of material 24 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). See margin.

(a) The table shows the volumes \(V \) (in cubic centimeters) of the box for various heights \(x \) (in centimeters). Use the table to estimate the maximum volume.

<table>
<thead>
<tr>
<th>Height, (x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, (V)</td>
<td>484</td>
<td>800</td>
<td>972</td>
<td>1024</td>
<td>980</td>
<td>864</td>
</tr>
</tbody>
</table>

(b) Plot the points \((x, V)\) from the table in part (a). Does the relation defined by the ordered pairs represent \(V \) as a function of \(x \)?

(c) If \(V \) is a function of \(x \), write the function and determine its domain.

90. **MAXIMUM PROFIT** The cost per unit in the production of an MP3 player is $60. The manufacturer charges $90 per unit for orders of 100 or less. To encourage large orders, the manufacturer reduces the charge by $0.15 per MP3 player for each unit ordered in excess of 100 (for example, there would be a charge of $87 per MP3 player for an order size of 120).

(a) The table shows the profits \(P \) (in dollars) for various numbers of units ordered, \(x \). Use the table to estimate the maximum profit. See margin.

<table>
<thead>
<tr>
<th>Units, (x)</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit, (P)</td>
<td>3135</td>
<td>3240</td>
<td>3315</td>
<td>3360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units, (x)</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profit, (P)</td>
<td>3375</td>
<td>3360</td>
<td>3315</td>
</tr>
</tbody>
</table>