Bellwork

Find the vertex, y-intercept, and x-intercepts of the function. Does the graph open up or down?

\[y = x^2 - 4x - 5 \]

- **Vertex:** \((2, -9) \)
- **X-intercepts:** \(x = -1, x = 5 \)
- **Y-intercept:** \(-5\)
- **Opens up:** \(a\) is positive

\[a = 1, b = -4, c = -5 \]
Homework Answers

1) \[x^3 - 7x + 6 = 0 \]

2) \[x^4 + x^3 - 10x^2 + 8x = 0 \]

3) \[x^5 - 5x^3 + 4x = 0 \]

4) \[x^3 - 2x^2 - 3x + 6 = 0 \]

5) \[x^4 - 3x^2 + 2 = 0 \]

6) \[\pm 4i \]

\[(x + 4i)(x - 4i) \]

\[x^2 - 16i^2 \]

\[x^2 + 16 \]

6) \[x^2 + 4 = 0 \]

7) \[x^3 - 2x^2 + 25x - 50 = 0 \]
Homework Answers

1) \[y = (x - 4)^2 - 4 \]
 Vertex(4, -4)
 y-intercept (0,12)
 x-intercept (2,0) (6,0)
 opens up

2) \[y = -(x + 5)^2 + 7 \]
 Vertex(-5, 7)
 y-intercept (0,-18)
 x-intercept (-2.35,0) (-7.65,0)
 opens down
Day 3 – Properties of Polynomials

Objective - List the characteristics of the polynomial function by examining the equation

- clever
- honest
- talkative
- ambitious
- imaginative
- charming
- affectionate
- loyal
- generous
- sporting
- honest
- helpful
Define “standard form”

\[x^4 + 4 - 4x^2 \]

\[-4x^2 + x + 4 \]

\[10 + x^2 + 9x^4 + 2x + 7x^2 - x^3 \]

\[9x^4 - x^3 + 8x^2 + 2x + 10 \]
Recall....

What is **degree** of a polynomial??

- no variable (0 degree) – \(x^0 \) Constant
- 1\(^{st}\) degree - \(x^1 \) Linear
- 2\(^{nd}\) degree - \(x^2 \) Quadratic
- 3\(^{rd}\) degree – \(x^3 \) Cubic
- 4\(^{th}\) degree – \(x^4 \) Quartic
- 5\(^{th}\) degree - \(x^5 \) Quintic
Name all of the characteristics you can about the following polynomial functions.

\[7x^3 - 5x + 6x^2 - 1\] \[2x^4 - 5x^5 + 9x + 4\]

- **Standard Form**: \(7x^3 + 6x^2 - 5x - 1\) \(-5x^5 + 2x^4 + 9x + 4\)
- **Degree**: 3 5
- **Type of Function**: cubic quintic
- **# of Solutions**: 3 5
- **# of Turns**: 2 4
- **y-intercept**: -1 4
- **Leading Coefficient**: 7 -5
- **Left End Behavior**: -\(\infty\) -8
- **Right End Behavior**: \(-\infty\) -8
Question...

What is a relative maximum?
 high point but not highest

What is a relative minimum?
The maximum number of turning points a graph will make is the degree minus 1.

<table>
<thead>
<tr>
<th>Degree: EVEN</th>
<th>Degree: EVEN</th>
<th>Degree: ODD</th>
<th>Degree: ODD</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>x^2</td>
<td>x^3</td>
<td>x^3</td>
</tr>
<tr>
<td>x^4</td>
<td>x^4</td>
<td>x^5</td>
<td>x^5</td>
</tr>
<tr>
<td>x^6</td>
<td>x^6</td>
<td>x^7</td>
<td>x^7</td>
</tr>
</tbody>
</table>

Leading Coefficient: **POSITIVE**

Leading Coefficient: **NEGATIVE**

Leading Coefficient: **POSITIVE**

Leading Coefficient: **NEGATIVE**
Determine whether the graph is:
- Odd or even degree
- Positive or negative leading coefficient
- How many real zeros
Possible Degree

Do these graphs have a maximum or minimum? Both? Neither? Why?
How do you determine a polynomial’s end behavior?
Homework

Classifying polynomials worksheet

Complete the following and hand in:

Worksheet # 1
Sage and Scribe Worksheet
4 graphing problems (from Monday)
Homework from last class. (see handout)