3.4 **EXERCISES**

VOCABULARY: Fill in the blanks.

1. To **solve** an equation in \(x \) means to find all values of \(x \) for which the equation is true.
2. To solve exponential and logarithmic equations, you can use the following One-to-One and Inverse Properties.
 (a) \(a^x = a^y \) if and only if \(x = y \).
 (b) \(\log_a x = \log_a y \) if and only if \(x = y \).
 (c) \(a^{\log_a x} = x \).
 (d) \(\log_a a^x = x \).
3. To solve exponential and logarithmic equations, you can use the following strategies.
 (a) Rewrite the original equation in a form that allows the use of the One-to-One Properties of exponential or logarithmic functions. **One-to-One**
 (b) **logarithmic; logarithmic** Rewrite an exponential equation in exponential form and apply the Inverse Property of exponential functions.
 (c) **logarithmic; logarithmic** Rewrite a logarithmic equation in exponential form and apply the Inverse Property of exponential functions.
4. An **exponential** solution does not satisfy the original equation. **extraneous**

SKILLS AND APPLICATIONS

In Exercises 5–12, determine whether each \(x \)-value is a solution (or an approximate solution) of the equation.

5. \(4x^2 = 64 \)
 (a) \(x = 5 \) **Yes**
 (b) \(x = 2 \) **No**

6. \(2^{3x+1} = 32 \)
 (a) \(x = -1 \) **No**
 (b) \(x = 2 \) **No**

7. \(3e^{x^2} = 75 \)
 (a) \(x = -2 + e^{25} \) **No**
 (b) \(x = -2 + \ln 25 \) **Yes**
 (c) \(x \approx 1.219 \) **Yes, approx.**

8. \(4e^{-x} = 60 \)
 (a) \(x = 1 + \ln 15 \) **Yes**
 (b) \(x = 3.708 \) **Yes, approx.**
 (c) \(x = \ln 16 \) **No**

9. \(\log_4(3x) = 3 \)
 (a) \(x \approx 21.333 \) **Yes, approx.**
 (b) \(x = -4 \) **No**
 (c) \(x = \frac{64}{3} \) **Yes**

10. \(\log_2(x + 3) = 10 \)
 (a) \(x = 1021 \) **Yes**
 (b) \(x = 17 \) **No**
 (c) \(x = 10^2 - 3 \) **No**

11. \(\ln(2x + 3) = 5.8 \)
 (a) \(x = \frac{1}{2}(-3 + \ln 5.8) \) **Yes**
 (b) \(x = 45.701 \) **Yes, approx.**
 (c) \(x \approx 163.650 \) **Yes, approx.**

In Exercises 13–24, solve for \(x \).

13. \(4^x = 16 \)
 (a) \(x = 2 \) **Yes**
 (b) \(x = 3 \) **No**

14. \(3^x = 243 \)
 (a) \(x = 5 \) **Yes**
 (b) \(x = -3 \) **No**

15. \(\sqrt[3]{x} = 32 \)
 (a) \(x = 2 \) **Yes**
 (b) \(x = 0 \) **No**

16. \(\sqrt[3]{x} = \sqrt[3]{64} \)
 (a) \(x = 6 \) **Yes**
 (b) \(x = -3 \) **Yes, approx.**

17. \(\ln(x - 2) = 0 \)
 (a) \(x = 2 \) **Yes**
 (b) \(x = 0 \) **No**

18. \(\ln(x - 5) = 0 \)
 (a) \(x = 5 \) **Yes**
 (b) \(x = -5 \) **No**

19. \(e^{2x} = 2 \)
 (a) \(x = 0.693 \) **No**
 (b) \(x = 1 \) **Yes**

20. \(e^{x^2} = 1.4 \)
 (a) \(x = 1 \) **Yes**
 (b) \(x = 0 \) **No**

21. \(\log_2(x - 1) = 2 \)
 (a) \(x = 4 \) **Yes**
 (b) \(x = 1 \) **No**

22. \(\log_3(x + 2) = 3 \)
 (a) \(x = 1 \) **Yes**
 (b) \(x = -5 \) **No**

In Exercises 25–28, approximate the point of intersection of the graphs of \(f \) and \(g \). Then solve the equation \(f(x) = g(x) \) algebraically to verify your approximation.

25. \(f(x) = 2^x \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 8 \) **No**

26. \(f(x) = 27^x \)
 (a) \(x = \frac{3}{3} \) **Yes**
 (b) \(x = 9 \) **No**

27. \(f(x) = \log_3(x) \)
 (a) \(x = 27 \) **Yes**
 (b) \(x = 3 \) **No**

28. \(f(x) = \ln(x - 4) \)
 (a) \(x = 5 \) **Yes**
 (b) \(x = 0 \) **No**

In Exercises 29–70, solve the exponential equation algebraically. Approximate the result to three decimal places.

29. \(e^x = e^{x^2} - 2 \)
 (a) \(x = 2 \) **Yes**
 (b) \(x = -1 \) **No**

30. \(e^{2x} = e^{x^2} - 2 \)
 (a) \(x = 4 \) **Yes**
 (b) \(x = 0 \) **No**

31. \(e^{x^3} = e^{x^2} - 3 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 0 \) **No**

32. \(e^{x^2} = e^{x^3} - 3 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 0 \) **No**

33. \(4^{3x} = 20 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

34. \(2(5^x) = 32 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

35. \(2e^x = 10 \)
 (a) \(x = 5 \) **Yes**
 (b) \(x = 4.609 \) **No**

36. \(e^{x^3} = 91 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 2 \) **No**

37. \(e^{x^2} - 9 = 19 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

38. \(e^{x^2} + 10 = 47 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

39. \(2^x = 80 \)
 (a) \(x = 6 \) **Yes**
 (b) \(x = 5 \) **No**

40. \(2^{x^2} = 3000 \)
 (a) \(x = 5 \) **Yes**
 (b) \(x = 4 \) **No**

41. \(5^{-x} = 0.2 \)
 (a) \(x = 2 \) **Yes**
 (b) \(x = 3 \) **No**

42. \(4^{-x} = 0.10 \)
 (a) \(x = 2 \) **Yes**
 (b) \(x = 3 \) **No**

43. \(3^{-x} = 27 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 0 \) **No**

44. \(2^{-x} = 32 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

45. \(3^{-x} = 565 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

46. \(8^{-x} = 431 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

47. \(3 - \frac{\ln 565}{\ln 2} \approx -6.142 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**

48. \(-\ln 64 - \ln 431 = -4.917 \)
 (a) \(x = 3 \) **Yes**
 (b) \(x = 1 \) **No**
47. \(8(10^{3x}) = 12\)
48. \(5(10^{-x/6}) = 7\)
49. \(3(5^{x-1}) = 21\)
50. \(8(3^{x-5}) = 40\)
51. \(e^{2x} = 12\)
52. \(e^{2x} = 50\)
53. \(500e^{-x} = 300\)
54. \(1000e^{-4x} = 75\)
55. \(7 - 2e^x = 5\)
56. \(-14 + 3e^x = 11\)
57. \(6(2^{3x-1}) - 7 = 9\)
58. \(8(4^{2x-3}) + 13 = 41\)
59. \(e^{2x} - 4e^x - 5 = 0\)
60. \(e^{2x} - 5e^{x} + 6 = 0\)
61. \(e^{2x} - 3e^x - 4 = 0\)
62. \(e^{2x} + 9e^x + 36 = 0\)
63. \(500 \quad 100e^{-x/2} = 20\)
64. \(400 \quad 1 + e^{-x} = 350\)
65. \(3000 \quad 2 + e^{2x} = 2\)
66. \(e^{6x} - 14 = 7\)
67. \((1 + 0.065)^{365y} = 4\)
68. \((4 - 2.517)^{10y} = 21\)
69. \((1 + 0.125t)^{12y} = 2\)
70. \((16 - 0.878)^{30y}\)

In Exercises 71–80, use a graphing utility to graph and solve the equation. Approximate the result to three decimal places. Verify your result algebraically. 71–80. See margin.

71. \(7 = 2^x\)
72. \(5^r = 212\)
73. \(6e^{1-x} = 25\)
74. \(-4e^{-x} + 15 = 0\)
75. \(3e^{2x/2} = 962\)
76. \(8e^{-2x/3} = 11\)
77. \(e^{0.09y} = 3\)
78. \(-e^{1.8x} + 7 = 0\)
79. \(e^{0.125y} - 8 = 0\)
80. \(e^{2.724x} = 29\)

In Exercises 81–112, solve the logarithmic equation algebraically. Approximate the result to three decimal places.

81. \(\ln x = -3\)
82. \(\ln x = 1.6\)
83. \(\ln x - 7 = 0\)
84. \(\ln x + 1 = 0\)
85. \(\ln 2x = 2.4\)
86. \(2.1 = \ln 6x\)
87. \(\log x = 6\)
88. \(\log 3z = 2\)
89. \(3 \ln 5x = 10\)
90. \(2 \ln x = 7\)
91. \(\ln \sqrt{x} + 2 = 1\)
92. \(\ln \sqrt{x} - 8 = 5\)
93. \(7 + 3 \ln x = 5\)
94. \(2 - 6 \ln x = 10\)
95. \(-2 + 2 \ln 3x = 17\)
96. \(2.3 + 3 \ln x = 12\)
97. \(6 \log_{10}(0.5x) = 11\)
98. \(4 \log_{10}(x-6) = 11\)
99. \(\ln x - \ln(x+1) = 2\)
100. \(\ln x + \ln(x+1) = 1\)
101. \(\ln x + \ln(x-2) = 1\)
102. \(\ln x + \ln(x+3) = 1\)
103. \(\ln(5x) = \ln(x-1) - \ln(x+1)\)
104. \(\ln(x+1) - \ln(x-2) = \ln x\)
105. \(\log_{10}(2x - 3) = \log_{10}(x + 4)\)
106. \(\log_{10}(3x + 4) = \log_{10}(x - 10)\)
107. \(\log_{10}(x + 4) - \log_{10}(x - 10)\)
108. \(\log_{10}(2x + 3) = \log_{10}(x - 10)\)
109. \(\log_{10}(x - 3) = \log_{10}(x - 10)\)
110. \(\log_{10}(x + 3) = \log_{10}(x - 10)\)
111. \(\log_{10}(x + 3) = \log_{10}(x - 10)\)
112. \(\log_{10}(x + 3) = \log_{10}(x - 10)\)

In Exercises 113–116, use a graphing utility to graph and solve the equation. Approximate the result to three decimal places. Verify your result algebraically. 113–116. See margin.

113. \(3 - \ln x = 0\)
114. \(10 - 4 \ln(x - 2) = 0\)
115. \(2 \ln(x + 3) = 3\)
116. \(\ln(x + 1) = 2 - \ln x\)

COMPOUND INTEREST In Exercises 117–120, \$250 is invested in an account at interest rate \(r\), compounded continuously. Find the time required for the amount to (a) double and (b) triple. 117–118. See margin.

117. \(r = 0.05\)
118. \(r = 0.045\)
119. \(r = 0.025\)
120. \(r = 0.0375\)
(a) \(27.73\) yr (b) \(43.94\) yr
119. 120. (a) \(18.48\) yr (b) \(29.30\) yr

In Exercises 121–128, solve the equation algebraically. Round the result to three decimal places. Verify your answer using a graphing utility.

121. \(2x^2 \log_2(x) + 2x^2 \log_2(3x) = 0\)
122. \(-x^2 \log_2(x) + 2x \log_2(3x) = 0\)
123. \(-x^2 \log_2(x) + 2x \log_2(3x) = 0\)
124. \(e^{-x} + 2e^{-2x} = 0\)
125. \(2x \ln x + x = 0\)
126. \(\ln(x^2)\) e^{-x/2} = 0.607
127. \(\ln x^2 = 0\)
128. \(2x \ln(\frac{1}{x}) = 0\)
129. \(\ln(\frac{1}{x}) = 0.368\)
130. \(\ln^{-1/2} = 0.607\)

DEMAND The demand equation for a limited edition coin set is

\[p = 1000 \left(1 - \frac{5}{5 + e^{-0.001x}}\right) \]

(a) \(210\) coins
(b) \(588\) coins

Find the demand \(x\) for a price of (a) \(p = \$139.50\) and (b) \(p = \$99.99\).

130. **DEMAND** The demand equation for a hand-held electronic organizer is

\[p = 5000 \left(1 - \frac{4}{4 + e^{-0.002x}}\right) \]

(a) \(303\) units
(b) \(528\) units

Find the demand \(x\) for a price of (a) \(p = \$600\) and (b) \(p = \$400\).