4-4
Factoring Quadratic Expressions

Vocabulary

Review
1. Complete each factor tree.

24

\[\begin{array}{c}
2 \\
3 \\
\end{array} \]

54

\[\begin{array}{c}
9 \\
\end{array} \]

Vocabulary Builder

factor (noun) FAK tər

Other Word Forms: factor (verb)

Main Idea: The factors of an expression are similar to the factors of a number.

Definition: The factors of a given expression are expressions whose product equals the given expression. When you factor an expression, you break it into smaller expressions whose product equals the given expression.

Example: The factors of the expression \(2x^2 - x - 10\) are \(2x - 5\) and \(x + 2\).

Use Your Vocabulary

2. Circle the prime factors of \(24xy\).

\[\begin{array}{c}
24 \cdot x \cdot y \\
2 \cdot 4 \cdot x \cdot y \\
2^3 \cdot 3 \cdot x \cdot y \\
\end{array} \]

3. Circle the prime factors of \(54a^2b\).

\[\begin{array}{c}
54 \cdot a^2 \cdot b \\
5 \cdot 4 \cdot a^2 \cdot b \\
2 \cdot 3^3 \cdot a^2 \cdot b \\
\end{array} \]
Factoring $ax^2 + bx + c$ when $a = \pm 1$

Got It? What is the expression $x^2 + 14x + 40$ in factored form?

4. Complete the factor table. Then circle the pair of factors whose sum is 14.

| Factors of 40 | 1, 40 | 2, | | |
| **Sum of Factors** | | | | |

5. Circle the expression written as the product of two binomials.

\[(x + 1)(x + 40) \quad (x + 2)(x + 20) \quad (x + 4)(x + 10) \quad (x + 5)(x + 8)\]

Got It? What is the expression $x^2 - 11x + 30$ in factored form?

6. Underline the correct word(s) to complete each sentence.

I need to find factors that **multiply** / **sum** to 30 and **multiply** / **sum** to -11.

At least one of the factors that sum to -11 must be **positive** / **negative**.

The two factors that multiply to 30 must both be **positive** / **negative**.

7. Circle the factors of 30 that sum to -11.

| 1 and 30 | 2 and 15 | 3 and 10 | 5 and 6 |
| -1 and -30 | -2 and -15 | -3 and -10 | -5 and -6 |

8. Factor the expression.

\[x^2 - 11x + 30 = \left(x \quad \right)\left(x \quad \right)\]

Got It? What is the expression $-x^2 + 14x + 32$ in factored form?

9. Rewrite the expression to show a trinomial with a leading coefficient 1.

\[-x^2 + 14x + 32 = \]

10. **Reasoning** You are looking for factors of -32 that sum to -14. Which of the factors has the greater absolute value, the negative factor or the positive factor? How do you know?

__

__

11. Circle the factors of -32 that sum to -14.

| -1 and 32 | -2 and 16 | -4 and 8 |
| 1 and -32 | 2 and -16 | 4 and -8 |

12. Write the factored form of the expression.
Problem 2 Finding Common Factors

Got It? What is the expression $7n^2 - 21$ in factored form?

13. The GCF of $7n^2$ and 21 is ____.
14. Use the Distributive Property to factor the expression.
 $$7n^2 + 21 = ____ (____ + ____)

Problem 3 Factoring $ax^2 + bx + c$ when $|a| \neq 1$

Got It? What is the expression $4x^2 + 7x + 3$ in factored form? Check your answers.

15. Complete the diagram below.
 $$4x^2 + 7x + 3$$
 $$\square \cdot \square = 12$$

16. Complete the factor pairs of ac. Then circle the pair that sums to 7.
 $$\begin{align*}
 (1, \quad & \quad) \\
 (2, \quad & \quad) \\
 (3, \quad & \quad)
 \end{align*}$$

17. Use your answer to Exercise 16 to complete the diagram below.
 $$4x^2 + 7x + 3$$
 $$\begin{align*}
 &\quad\quad\quad\quad\quad\quad\quad + \\
 &\quad\quad\quad\quad\quad\quad\quad +
 \end{align*}$$

 $$= 4x^2 + (4x) + \square + \square$$
 $$= 4x(\quad + \quad) + 3(\quad + \quad)$$

 The expressions inside the parentheses must be equal.

 Use the Distributive Property to factor out the GCF, the part inside the parentheses.

 $$= (4x + 3)(\quad + \quad)$$

Problem 4 Factoring a Perfect Square Trinomial

Got It? What is $64x^2 - 16x + 1$ in factored form?

18. Circle the form your answer will have.
 $$____ (____ + ____)$$

 $$____ (____ - ____)$$
19. Use the justifications to complete each step.

\[64x^2 - 16x + 1 \]
\[\left(_ _x _ _ \right)^2 - 16x + \left(_ _ _ _ \right)^2 \]
\[\left(_ _x _ _ \right)^2 - 2\left(_ _ _ _ _ _ _ \right)x + \left(_ _ _ _ _ _ _ _ _ \right)^2 \]

Write the original expression.
Write the first and third terms as squares.
Write the middle term as \((2ac)x\).

20. Write the expression as the square of a binomial.

Lesson Check • Do you UNDERSTAND?

Reasoning Explain how to rewrite the expression \(a^2 - 2ab + b^2 - 25\) as the product of two trinomial factors. \((Hint: Group the first three terms. What type of expression are they?)\)

21. Complete: The first three terms of the expression are a ___.

- perfect square trinomial
- difference of two squares

22. Factor the first three terms of the expression.

23. Rewrite the original expression using the factored form of the first three terms.

24. Complete: The expression you wrote in Exercise 23 is a ___.

- perfect square trinomial
- difference of two squares

25. Circle the expression written as the product of two trinomial factors.

\[a^2 - 2ab + b^2 \]
\[(a - b)^2 - 25 \]
\[(a - b)(-25) \]
\[(a - b - 5)(a - b + 5) \]

Math Success

Check off the vocabulary words that you understand.

- factor of an expression
- perfect square trinomial
- difference of two squares

Rate how well you can factor quadratic expressions.

<table>
<thead>
<tr>
<th>Need to review</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>Now I get it!</th>
</tr>
</thead>
</table>