Warm Up:
Solve each equation.

\[5x + 11 = 4 \]
\[2(x - 2) = 3(x + 3) \]

ACT Question:
Which of the following is an irrational number?

A.) \(\sqrt[3]{100} \)
B.) \(\sqrt{\frac{1}{4}} \)
C.) \(\sqrt{16} \)
D.) \(\sqrt{81} \)
E.) \(\sqrt{99} \)

Vocabulary:
Solution of an inequality: is any number that makes the inequality true.

Inequality Signs:
Greater Than \(> \)
Less Than \(< \)
Greater than or EQUAL to \(\geq \)
Less than or EQUAL to \(\leq \)
Examples 1 and 2:
Write an inequality that represents each verbal expression.

is greater than

is less than or equal to

Examples 3 and 4:
Write an inequality that represents each verbal expression.

more than

is greater than or equal to

The quotient of

is less than

Examples 5 and 6:
Determine whether each number is a solution of the given inequality.

a.) 2 b.) 10

a.) -1 b.) 8 c.) 10

Examples 7 and 8:
Graph each inequality.

Examples 9 and 10:
Graph each inequality.

(with your shoulder buddy)

Essentials:
In real-world inequalities - we see words like "at least" and "at most"

If you see
AT MOST \(\leq \)

Examples 11 and 12:
Define a variable and write an inequality to model each situation.

No people may use the treadmills at any time in the gym.

To train for a marathon, a runner decides that she must run miles each day.

Examples 13 and 14:
Write an inequality for each graph.
Summary

What symbol does at most mean?

When do I put a closed dot on the graph?
 An open dot?