Warm Up:
Graph the following:

\[-2x + y = -3 \quad \text{and} \quad 3x + y = 9 \]

Learning Goal: I will be able to solve systems of equations by graphing and analyze special systems.

Vocabulary:
System of linear equation: two or more linear equations
Solution of a system of linear equations: any ordered pair that makes all of the equations in a system true. \((x, y)\)

Vocabulary:
Inconsistent: when a system of equations has no solutions
Consistent: when a system of equations has at least one solution.
Independent: when a consistent system has exactly one solution.
Dependent: when a consistent system has infinitely many solutions.
Helpful Hints:

Use graph paper for more accurate solutions
ALWAYS check your work!!

Check your Answers!
You know your ordered pair is the correct solution if it makes BOTH equations true.

Check your solution.

Example 1:
Solve the system by graphing.

\[y = 3x + 1 \]
\[y = -x + 5 \]

Check your solution.

Example 2:
Solve the system by graphing.

\[y = \frac{1}{2}x - 3 \]
\[3x + y = 4 \]
Check your Answers!
You know your ordered pair is the correct solution if it makes BOTH equations true. Check your solution.

Example 3: (with your shoulder buddy)
Solve the system by graphing.

\[y = -\frac{1}{5}x + 1 \]
\[y = \frac{2}{5}x - 10 \]

Example 4:
Solve the system by graphing.

\[2y - x = 2 \]
\[y = \frac{1}{2}x + 1 \]

Vocabulary:
One Solution: C
No Solutions: B
Infinitely Many Solutions: A
Example 5: Solve the system by graphing.

\[
\begin{align*}
y &= 2x + 2 \\
y &= 2x - 1
\end{align*}
\]

Summary

How do you check your solution?
- Plug point into equations

How do you know if there is no solution?
- Never cross, same slope different intercept

What does it mean when a system has many solutions?
- Every point works

Coursework: Worksheet!