Algebra 2
6.1 Solving Systems by Graphing Worksheet

Solve each system by graphing.

1.) \(y = x - 4 \)
\(y = 3x - 4 \)

2.) \(y = -3x + 3 \)
\(y = 2x - 7 \)

3.) \(y = \frac{3}{4}x - 5 \)
\(3x - 4y = 20 \)

4.) \(-x + y = 3 \)
\(y = -4x - 2 \)

5.) \(y = -3x + 2 \)
\(y = 2x - 3 \)

6.) \(y = -4x - 6 \)
\(-x + y = 9 \)

Solve each system by graphing. Tell whether the system has one solution, infinitely many solutions, or no solution.

7.) \(5x + y = -5 \)
\(10x + 2y - 10 = 0 \)

8.) \(y + 2x = 7 \)
\(2y - 1 = -4x + 13 \)

9.) \(18x - 3y = 21 \)
\(6x - y = 7 \)
10.) Can there be more than one point of intersection between the graphs of two linear equations? Why or why not?

11.) If the graphs of the equations in a system of linear equations coincide with each other, what does that tell you about the solution of the system? Explain.

12.) If the ordered pair (3, -2) satisfies one of the two linear equations in a system, how can you tell whether the point satisfies the other equation of the system? Explain.